Predicting citation counts based on deep neural network learning techniques
نویسندگان
چکیده
منابع مشابه
Predicting citation counts of environmental modelling papers
We assessed all papers published in two key environmental modelling journals in 2008 to determine the degree to which the citation counts of the papers could be predicted without considering the paper’s quality. We applied both random forests and general additive models to predict citation counts using a range of easily quantified or categorised characteristics of the papers as covariates. The ...
متن کاملTwo Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate
Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...
متن کاملFace Recognition based on Deep Neural Network
In modern life, we see more techniques of biometric features recognition have been used to our surrounding life, especially the applications in telephones and laptops. These biometric recognition techniques contain face recognition, fingerprint recognition and iris recognition. Our work focuses on the face recognition problem and uses a deep learning method, convolutional neural network, to sol...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملLarge-scale Artificial Neural Network: MapReduce-based Deep Learning
Faced with continuously increasing scale of data, original back-propagation neural network based machine learning algorithm presents two non-trivial challenges: huge amount of data makes it difficult to maintain both efficiency and accuracy; redundant data aggravates the system workload. This project is mainly focused on the solution to the issues above, combining deep learning algorithm with c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Informetrics
سال: 2019
ISSN: 1751-1577
DOI: 10.1016/j.joi.2019.02.011